Paper title:

Left QI-rings with constraints

Published in: Issue 2, (Vol. 19) / 2025
Pages: 3-12
Author(s): Ion BUNU, Olga CHICU
Abstract. In the R-Mod category of left R-modules over the associative ring R with unity we study left QI-rings, obtaining, in the case of concrete restrictions, their complete description.
Keywords: Torsion (pretorsion), Essential Ideal, Strongly Semiprime Rings, PQ-rings, QI-rings.
References:

[1]. Faith C. Algebra: rings, modules and categories. V.1. M.: Mir, 1977 (in Russian).

[2]. Faith C. Algebra: rings, modules and categories. V.2. M.: Mir, 1979 (in Russian).

[3]. Sharpe D.W., Wamos P. Injective modules. Cambridge Univ. Press, 1972.

[4]. Bican L., Kepka T., Nemec P. Rings, modules and preradicals. Marcel Dekker, 1982.

[5]. Guţan M., Guţan G., Radu Gh., Ştefanescu M., Preradicals and torsion theories.Universitatea „Al. Ioan Cuza” Ia.i, Facultatea de Matematica, 1986.

[6]. Kashu A.I. Radicals and torsion in modules. Chisinau, .tiinta, 1983 (in Russian).

[7]. Stenström B., Rings of quotiens. Springer Verlag, Berlin, 1975.

[8]. Andrunakievic A.V. About quite simple one-sided ideals, no.1, pp 10-15.

[9]. Boyle A.K., Goodearl K.R., Rings over wich certain modules are injective. Pacif. J.Math., V.58, no.1, 1975.

[10]. Beachy J.A. A generalization of injectivity. Pacif. J.Math., no.2, 1972, pp. 313-327.

[11]. Bunu I.D. On left-QI-rings. Mat. Issld., vyp 49, 1979, pp. 23-34 (in Russian).

[12]. Bunu I.D. On rings over which all pretorsion is ideal. Chisinau: Ştiinta, 1983, pp.12-15.

[13]. Bunu I.D. On the strongly semiprime rings. Bul. Acad. Ştiinţe Repub., Mold., Mat., no. 1(23), 1997, pp. 78-83.

[14]. Bunu I.D. On rings over which the lattice of all pretorsions has only one maximal element. Fundamentalnaya I prikladnaya matematika. V.4, no.1, 1998, pp. 223-231. (in Russian)

[15]. Byrd K.A. Rings whose quasi-injective modules are injective. Proc. Amer. Math. Soc., V.33. no. 2, 1972, pp. 235-240.

[16]. Faith C. On hereditary rings and Boyle’s conjecture. Arch. Math., V. 27, no. 2, 1976, pp. 113-119.

[17]. Handelman D. Strongly semiprime rings. Pacific I. Math., V.60, no.1, 1975, pp.115-122.

[18]. Harada M. Note on quasi-injective modules. Osaka I. Math., V.2, 1965, pp. 351-356.

[19]. Kashu A.I. Radicals and cogenerators in modules. Mat. Issled., V.XI, no. 2(32), 1974, pp. 53-68 (in Russian)

[20]. Koifman L.A. Rings over which singular modules are injective. I. Mat. Issled., v.VI, no. 2(20), 1971, pp. 85-104. (in Russian)

Back to the journal content
Creative Commons License
This article is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
Home | Editorial Board | Author info | Archive | Contact
Copyright JACSM 2007-2025