Paper title: Complexities in a Plant-Herbivore Model
DOI: https://doi.org/10.4316/JACSM.201702005
Published in: Issue 2, (Vol. 11) / 2017Download
Publishing date: 2017-10-13
Pages: 30-35
Author(s): SHARMA Rajni, SAHA L. M.
Abstract. A simple host-parasite type model has been considered to study the interaction of certain plants and herbivores. The two dimensional discrete time model utilizes leaf and herbivore biomass as state variables. The parameter space consists of the growth rate of the host population and a parameter describing the damage inflicted by herbivores. Perceptive bifurcation diagrams, which give insightful results, have been present here showing chaos and complexity in the system during evolution. Measure of complexity and chaos in the system be explained by performing numerical calculations and obtaining Lyapunov exponents, topological entropies and correlation dimension. Results are displayed through interesting graphics
Keywords: Chaos, Lyapunov Exponents, Bifurcation, Topological Entropy
References:

1. W.Weaver,(1948): “Science and complexity,” American Scientist, vol. 36, no. 4, p. 536, .

2. H. A. Simon,(1962): “The architecture of complexity,” Proceedings of the American Philosophical Society, vol. 106(6): 467–482.

3. Manson, S. M. (2001). Simplifying complexity: a review of complexity theory. Geoforum, 32(3): 405-414.

4. Yaneer Bar-Yam ( 1992): Dynamics of Complex Systems. Addison-Wesley, Reading, Massachusetts.

5. Adler, R L Konheim, A G McAndrew, M H. (1965): Topological entropy, Trans. Amer. Math. Soc. , 114: 309-319

6. Andrecut, M. and Kauffman, S. A. (2007): Chaos in a Discrete Model of a Two-Gene System. Physics Letters, A 367: 281-287.

7. R. Bowen, R . Topological entropy for noncompact sets (1973): Trans. Amer. Math. Soc. 1973: 184: 125- 136.

8. Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J. M. (1980). "Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1 & II: Theory".Meccanica 15: 9 – 20 & 21 – 30.

9. Abarbanel, H.D.I.; Brown, R.; Kennel, M.B. (1992). "Local Lyapunov exponents computed from observed data". Journal of Nonlinear Science 2 (3), pp 343-365.

10. L. Stewart, E. S. Edward (1997) Calculating topological entropy, J. Stat. Phys. 89: 1017–1033.

11. N. J. Balmforth, E. A. Spiegel, C. Tresser (1994) Topological entropy of one dimenonal maps: approximations and bounds, Phys. Rev. Lett.72: 80 – 83.

12. Nagashima, H. and Baba, Y. (2005). Introduction to Chaos: Physics and Mathematics of Chaotic Phenomena. Overseas Press India Private Limited.

13. P. Grassberger and Itamar Procaccia (1983). "Measuring the Strangeness of Strange Attractors". Physica D: Nonlinear Phenomena 9 (1‒2): 189‒208.

14. P. Grassberger and Itamar Procaccia (1983). "Characterization of Strange Attractors". Physical Review Letters 50 (5): 346‒349.

15. J. R. Beddington, C. A. Free and J.H. Lawton, 1975. Dynamic complexity in predator-prey models framed in difference equations. Nature, London, 225, 58-60.

16. Harper, J.L. 1977. Population Biology of Plants. Academic Press, New York. 1035 – 1039.

17. J. Antonovics and D.A., Levin, 1980. The ecological and genetic consequences of density-dependent regulation in plants. Annual Review of Ecological Systems, 11, 411-452.

18. A.R. Watkinson, 1980. Density-dependence in single-species populations of plants. Journal of Theoretical Biology, 83, 345 - 357.

19. P.J. McNamee, J.M. McLeod and C.S. Holling, 1981. The structure and behaviour of defoliating insect/forest systems. Researches on Population Ecology, 23, 280?298.

20. R.M. May, 1981. Density dependence in host-parasitoid models, Journal of Animal Ecology, 50, 855-865.

21. Karen C. Abbott and Greg Dwyer, 2007. Food limitation and insect outbreaks: complex dynamics in plant-herbivore models, J Anim Ecol. 2007 Sep;76(5):1004-14.

22. Yun Kang,Dieter Armbruster and Yang Kuang(2008) Dynamics of a plant–herbivore model,Journal of biological dynamics, 2(2):89-101 · April 2008

23. L. M. Saha , Neha Kumra, (2016): Complexities in Lozi map and control of chaos, Advanced Studies in Contemporary Mathematics, volume 26 (2), 243 – 253.

24. Lal Mohan Saha, Til Prasad Sarma, Purnima Dixit (2016) Study of complexities in bouncing ball dynamical system, Journal of Applied Computer Science & Mathematics, Vol. 10, No. (1), 2016, 46 – 50.

25. A.M. Lyapunov The General Problem of the Stability of Motion, Taylor & Francis, London 1992.

26. G.A. Leonov and N.V. Kuznetsov, Time-varying linearization and the Perron effects International Journal of Bifurcation and Chaos 17:1079 (2006)

27. P. Grassberger, Information Content and Predictability of Lumped and Distributed Dynamical Systems, Physca Scripta 40:346 (1989).

28. Stephen Lynch (2007), Dynamical Systems with Applications using Mathematica. Birkhäuser, Boston.

29. M. Martelli (1999), Introduction to Discrete Dynamical Systems and Chaos, John Wiley & Sons, Inc, New York.

30. L. M. Saha and M. K. Das, (2013): Complexities in micro-economic Beherens Feichtinger model. Indian Journal of Industrial and Applied Mathematics 7(2):127 – 135.

Back to the journal content
Creative Commons License
This article is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
Home | Editorial Board | Author info | Archive | Contact
Copyright JACSM 2007-2020