Paper title: Applications of Briot-Bouquet differential subordination
DOI: https://doi.org/10.4316/JACSM.201502006
Published in: Issue 2, (Vol. 9) / 2015Download
Publishing date: 2015-10-22
Pages: 35-39
Author(s): Macovei Anamaria G.
Abstract. The concept of differential subordination is introduced by S. S. Miller and P. T. Mocanu. In this paper we present a few the applications of differential subordinations using properties of the Briot-Bouquet linear operator
Keywords: Differential Subordination, Operator Differential Briot – Bouquet, Differential Subordination Briot – Bouquet, Dominant
References:

1. T. Bulboacã, Classes of first-order differential superordinations, Demonstratio Mathematica, 352 (2002), 11-17;

2. N. E. Cho, T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40 (3) (2003), 399-410;

3. N. E. Cho, H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, 37(1-2) (2003), 39-49;

4. Ibrahim, R.W., Darus, M., Subordination and superordination for univalent solutions for fractional differential equations, Journal of Mathematical Analysis and Applications, 345 (2) (2008), 871-879;

5. Macovei, A.G. – An application of the Briot-Bouquet integral operator for differential superordinations - Journal of Applied Computer Science & Mathematics, eISSN-2066- 3129, ISSN-2066-4273, nr. 6 (3), 2009, 84-86,

6. Macovei, A. G. – An application of Briot-Bouquet differential superordinations, Bulletin of University of Agriwithltural Sciences and Veterinary Medicine ClujNapoca, ISSN 1843-5254, E-ISSN 1843-5294, volume 66 (2), 2009, 738-742,

7. Macovei, A. G. – Some Applications of Differential Subordinations - Journal of Applied Computer Science & Mathematics, eISSN-2066-3129, ISSN-2066-4273, nr. 11 (5), 2011, 89-93,

8. A. G. Macovei, Differential subordinations and superordinations for analytic functions defined by the Ruscheweyh linear operator - International journal of academic research, 3 (4), (2011), 26-32;

9. A. G. Macovei, Briot-Bouquet differential subordinations and superordinations using the linear operator, Journal of Applied Computer Science & Mathematics, eISSN-2066- 3129, ISSN-2066-4273, nr. 15 (7), 2013, 35-39;

10. S.S. Miller, P.T. Mocanu, Differntial subordinations and univalent functions, Michig. Math. J., 28 (1981), 157-171;

11. S.S. Miller, P.T. Mocanu, Univalent solution of Briot – Bouquet differential equations, J. Differential Equations, 56(1985), 297-308;

12. S.S. Miller, P.T. Mocanu, Differntial subordinations and inequalities in the complex plane, J. Diff. Eqn., 56 (1985), 185-195;

13. S.S. Miller, P.T. Mocanu, Briot – Bouquet differential equations and differential subordinations, Complex V ariables. 33 (1997), 217-237;

14. S.S. Miller, P. T. Mocanu, Differential Subordinantions. Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000;

15. P.T. Mocanu, T. Bulboacã, G. S. Sãlãgean, Teoria geometricã a funcþiilor univatente, Casa Cãrþii de ªtiinþã (Cluj), 1999;

16. S. Sivaprasad Kumar, H. C. Taneja, V. Ravichandran, Classes of Multivalent Functions Defined by Dzioksrivastava linear Operator and Multiplier Transformation, Kyungpook Math. J., 46 (2006), 97-109;

17. T.N. Shanmugam, S. Sivasubramnian, M. Darus, C. Ramachandran, Subordinations and Superordination Results for Certain Subclasses of Analytic Functions, International Mathematical Forum, no. 21 (2) (2007), 1039-1052.

Back to the journal content
Creative Commons License
This article is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
Home | Editorial Board | Author info | Archive | Contact
Copyright JACSM 2007-2020